Skip to content
2022
- Blakseth, S.S., Rasheed, A., Kvamsdal, T. and San, O., Combining physics-based and data-driven techniques for reliable hybrid analysis and modeling using the corrective source term approach, Applied Soft Computing, 128, 109533, 2022
- Robinson H., Pawar, S., Rasheed, A., San, O., Physics guided neural networks for modelling of non-linear dynamics, Neural Networks, 154, 333-345, 2022
- San, O., Pawar, S., Rasheed, A., Prospects of federated machine learning in fluid dynamics. AIP Advances, 2022
- Heiberg, A., Larsen, T.N., Meyer, E., Rasheed, A., San, O., Varagnolo, D., Risk-based implementation of COLREGs for autonomous surface vehicles using deep reinforcement learning, Neural Networks, 152, 17-33, 2022
- Gupta, P., Rasheed, A., Steen, S., Ship Performance Monitoring using machine-learning, Ocean Engineering, 254, 111094, 2022
- Pawar, S., San, O., Vedula, P., Rasheed, A., Kvamsdal, T., Multi-fidelity information fusion with concatenated neural networks, Scientific Report, 12, 5900, 2022
2021
- Blakseth, S.S., Rasheed, A., Kvamsdal, T., San, O. Deep neural network enabled corrective source term approach to hybrid analysis and modeling, Neural Networks, 146, 181-199, 2021
- Alshantti, A.A.S., Rasheed, A. Self-organising map based framework for investigating accounts sus- pected of money laundering, Frontiers in Artificial Intelligence, 2021
- Ahmed, S. E., San, O., Rasheed, A. and Iliescu, T. Nonlinear proper orthogonal decomposition for convection-dominated flows, Physics of Fluids, 33, 121702, 2021.
- Larsen, T.N., Teigen, H.Ø., Laache, T., Varagnolo, D., and Rasheed, A., Comparing Deep Reinforcement Learning Algorithms’ Ability to Safely Navigate Challenging Waters, Frontiers in Robotics and Artificial Intelligence, 8, 287, 2021
- Lundby, E.T.B., Rasheed, A., Gravdahl, J.T., Halvorsen, I.J., A novel hybrid analysis and modeling approach applied to aluminum electrolysis process, Journal of Process Control, 105, 62–77, 2021.
- Gupta, P., Taskar, B., Steen, S., Rasheed, A., Statistical modeling of Ship’s hydrodynamic performance indicator, Applied Ocean Research, 111, 102623, 2021.
- Ahmed, S., Pawar, S., San, O., Rasheed, A., Iliescu, T., and Noack, B., On closures for reduced order models – a spectrum of first-principle to machine-learned avenues, Physics of Fluids, 33, 091301, 2021.
- Pawar, S., San, O., Rasheed, A., Navon, I.M., A nonintrusive hybrid neural-physics modeling of incomplete dynamical systems: Lorenz equations, International Journal of Geomathematics, 12, 17, 2021
- Pawar, S., San, O., Aditya, N., Rasheed, A., Kvamsdal, T., Model fusion with physics-guided machine learning: projection based reduced order modeling, Physics of Fluids, 33, 067123, 2021. (Editor’s Pick)
- San, O., Rasheed, A., Kvamsdal, T. Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution, GAMM Mitteilungen, 44, e202100007, 2021.
- Sundby, T., Graham, J. M., Rasheed, A., Tabib, M., San, O., Geometric change detection in digital twins, Digital, 1 (2), 111-129, 2021.
- Ahmed, S. E., Pawar, S., San, O., Rasheed, A., Tabib, M., A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction, Computers and Fluids, 221, 104895, 2021.
- Stavelin, H., Rasheed, A., San, O., Hestnes, A. J., Applying object detection to marine data and exploring explainability of a fully convolutional neural network using principal component analysis, Ecological Informatics, 62, 101269, 2021.
- Ahmed, S. E., San, O., Kara, K., Younis, R., Rasheed, A., Multifidelity computing for coupling full and reduced order models, PLOS ONE, 16(2), e0246092, 2021.
- Havenstrøm, S. T., Rasheed, A., San, O. Deep reinforcement learning controller for 3D path following and collision avoidance by autonomous underwater vehicles, Frontiers in Robotics and AI, 7, 566037, 2021.
- Pawar, S., San, O., Aksoylu, B., Rasheed, A., Kvamsdal, T. Physics guided machine learning using simplified theories, Physics of Fluids, 33, 011701, 2021.
- Pawar, S. and San, O. Data assimilation empowered neural network parameterizations for subgrid processes in geophysical flows. Physical Review Fluids, accepted, 2020.
- Mou, C., Koc, B., San, O. , Rebholz, L. G. and Iliescu, T. Data-driven variational multiscale reduced order models. Computer Methods in Applied Mechanics and Engineering, 373, 113470, 2021.
2020
- Ahmed, S. E., San, O., Kara, K., Younis, R., Rasheed, A., Interface learning of multiphysics and multiscale systems, Physical Review E, 102, 053304, 2020.
- Ahmed, S. E., Bhar, K., San, O., Rasheed, A. Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction, Physical Review E, 102, 043302, 2020.
- Meyer, E., Heiberg, A., Rasheed, A., San, O., COLREG-Compliant Collision Avoidance for Un- manned Surface Vehicle using Deep Reinforcement Learning, IEEE Access, 8, 165344-165364, 2020.
- Pawar, S., Ahmed, S. E., San, O., Rasheed, A., Navon I. M., Long short-term memory embedded nudging schemes for nonlinear data assimilation of geophysical flows, Physics of Fluids, 32, 076606, 2020.
- Pawar, S., Ahmed, S. E., San, O., Rasheed, A. An evolve-then-correct reduced order model for hidden fluid dynamics, Mathematics, 8(4), 570, 2020.
- Ahmed, S. E., San, O., Rasheed, A., Iliescu, T., A long short-term memory embedding for hybrid uplifted reduced order models, Physica D: Nonlinear Phenomena, 409, 132471, 2020.
- Pawar, S., Ahmed, S. E., San, O., Rasheed, A., Data-driven recovery of hidden physics in reduced order modeling of fluid flows, Physics of Fluids, 32, 036602, 2020.
- Meyer, E., Robinson, H., Rasheed, A., San, O., Taming an autonomous surface vehicle for path following and collision avoidance using deep reinforcement learning, IEEE Access, 8, 41466-41481, 2020.
- Rasheed, A., San, O., Kvamsdal, T., Digital twin: values, challenges and enablers from a modeling perspective, IEEE Access, 8, 21980-22012, 2020.
- Pawar, S., San, O., Rasheed, A., Vedula, P., A priori analysis on deep learning of subgrid-scale parameterizations for Kraichnan turbulence, Theoretical and Computational Fluid Dynamics, 34, 429-455, 2020.
- Vaddireddy, H., Rasheed, A., Staples, A. E., San, O., Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data, Physics of Fluids, 32, 015113, 2020. (Editor’s Pick)
- Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Numerical assessment of RANS turbulence models for the development of data driven reduced order models, Ocean Engineering, 196, 106799, 2020
- Ahmed, S. E., Pawar, S. and San, O. PyDA: A hands-on introduction to dynamical data assimilation with Python. Fluids, 5(4), 225, 2020.
- Pawar, S., Ahmed, S. E. and San, O. Interface learning in fluid dynamics: statistical inference of closures within micro-macro coupling models. Physics of Fluids, 32, 091704, 2020. (Featured Article)
- Ahmed, S. E., Pawar, S. and San, O. PyDA: A hands-on introduction to dynamical data assimilation with Python. Fluids, 5(4), 225, 2020.
- Pawar, S., Ahmed, S. E. and San, O. Interface learning in fluid dynamics: statistical inference of closures within micro-macro coupling models. Physics of Fluids, 32, 091704, 2020.
- Ahmed, M., Park, H., Bach, C. K. and San, O. Numerical Investigation of Air Mixer for HVAC Testing Applications (ASHRAE RP-1733). Science and Technology for the Built Environment, 26(9), 1252-1273, 2020.
- Maulik, R. and San, O. Numerical assessments of a parametric implicit large eddy simulation model. Journal of Computational and Applied Mathematics, 376, 112866, 2020.
- Maulik, R., San, O. and Jacob, J. D. Spatiotemporally dynamic implicit large eddy simulation using machine learning classifiers. Physica D: Nonlinear Phenomena, 406, 132409, 2020.
- Ahmed, S. E. and San, O. Breaking the Kolmogorov barrier in model reduction of fluid flows. Fluids, 5, 26, 2020.
- Ahmed, S. E., San, O., Bistrian, D. A. and Navon, I. M. Sampling and resolution characteristics in reduced order models of shallow water equations: intrusive vs non‐intrusive. International Journal for Numerical Methods in Fluids, 92 (8), 992-1036, 2020.
2019
- Ahmed, S. E., Rahman, S. M., San, O., Rasheed, A., Navon, I. M., Memory embedded non-intrusive reduced order modeling of non-ergodic flows, Physics of Fluids, 31, 126602, 2019.
- Rahman, S. M., Pawar, S., San, O., Rasheed, A., Iliescu, T., Nonintrusive reduced order modeling framework for quasigeostrophic turbulence, Physical Review E, 100, 053306, 2019.
- Pawar, S., Rahman, S. M., Vaddireddy, H., San, O., Rasheed, A., Vedula, P., A deep learning enabler for non-intrusive reduced order modeling of fluid flows, Physics of Fluids, 31, 085101, 2019. (Featured Article)
- Maulik, R., San, O., Rasheed, A. and Vedula, P. Sub-grid modelling for two-dimensional turbulence using neural networks, Journal of Fluid Mechanics, 858, 122-144, 2019.
- Siddiqui, M.S., Rasheed, A., Kvamsdal, T. Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel, Wind and Structures, 29, 405–416, 2019
- Siddiqui, M.S., Fonn, E., Kvamsdal, T., Rasheed, A., Finite Volume high-fidelity simulation com- bined with finite-element-based reduced order modeling of incompressible flow problems, Energies, 12, 1271, 2019
- Fonn, E., Brummelen, H.van, Kvamsdal, T., Rasheed, A., Fast divergence-conforming reduced basis methods for steady Navier–Stokes flow, Computer Methods in Applied Mechanics and Engineering, 346, 486–512, 2019
- Siddiqui, M.S., Rasheed, A., Tabib, M.V., Kvamsdal, T., Numerical investigation of modeling frame- works and geometric approximations on NREL 5MW wind turbine, Renewable Energy, 132, 1058– 1075, 2019
- Pawar, S. and San, O. CFD Julia: A learning module structuring an introductory course on computational fluid dynamics. Fluids, 4(3), 159, 2019.
- Vaddireddy, H. and San, O. Equation discovery using fast function extraction: a deterministic symbolic regression approach. Fluids, 4(2), 111, 2019.
- Rahman, S. M., Ahmed, S. and San, O. A dynamic closure modeling framework for model order reduction of geophysical flows. Physics of Fluids, 31, 046602, 2019.
- Maulik, R., San, O., Jacob, J. and Crick, C. Sub-grid scale model classification and blending through deep learning. Journal of Fluid Mechanics, 870, 784-812, 2019.
- San, O., Maulik, R. and Ahmed, M. An artificial neural network framework for reduced order modeling of transient flows. Communications in Nonlinear Science and Numerical Simulation, 77, 271-287, 2019.
- Rahman, S. M. and San, O. A relaxation filtering approach for two-dimensional Rayleigh–Taylor instability-induced flows. Fluids, 4(2), 78, 2019.
- Rahman, S. M. and San, O. A localized dynamic closure model for Euler turbulence. International Journal of Computational Fluid Dynamics, 32(8-9), 326-378, 2019.
- Sk Mashfiqur Rahman, Rasheed, Adil, and Omer San. A hybrid analytic framework for accel- erating incompressible flow solvers. Fluids, 3(3):50, 2018
- Knut Nordanger, Rasheed, Adil, Knut Morten Okstad, Arne Morten Kvarving, Runar Holdahl, and Trond Kvamsdal. Numerical benchmarking of fluid-structure interaction: An isogeometric finite element approach. Ocean Engineering, 124:324–339, 2016
- Knut Nordanger, Runar Holdahl, Arne Morten Kvarving, Trond Kvamsdal, and Rasheed, Adil. Simulation of airflow past a 2d naca0015 airfoil using an isogeometric incompressible navier-stokes solver with the spalart-allmaras turbulence model. Computer Methods in Applied Mechanics and Engineering, 290:183–208, 2015
- Knut Nordanger, Runar Holdahl, Arne Morten Kvarving, Rasheed, Adil, and Trond Kvamsdal. Implementation and comparison of three isogeometric navier–stokes solvers applied to simulation of flow past a fixed 2d naca0012 airfoil at high reynolds number. Computer Methods in Applied Mechanics and Engineering, 284:664–688, 2014
- Rasheed, Adil and Asif Mushtaq. Numerical analysis of the flying condition at the alta airport, norway. Aviation, 18:109–119, 2014
- Rasheed, Adil and Karstein Sørli. Cfd analysis of terrain induced turbulence at kristiansand airport, kjevik. Aviation, 17:104–112, 2013
- Rasheed, Adil and Darren Robinson. Characterization of dispersive fluxes in mesoscale models using les of flow over an array of cubes. International Journal of Atmospheric Sciences, 17:898095, 2013
- Rasheed, Adil, Darren Robinson, Alain Clappier, Chidambaram Narayanan, and Djamel Lake- hal. Representing complexities in urban geometry in mesoscale modeling. International Journal of Climatology, 31:289–301, 2011